PROJECTILES

Unit 9 + kinematics Dr. John P. Cise, Professor of Physics,
Austin Com. College, 1212 Rio Grande St., Austin Tx. 78701 jpcise@austincc.edu \& New York Times , March 19, 2016
By Scott Cacciolamarch

Stephen Curry shooting a 3-pointer against the Pelicans on Monday. Curry, whose post-practice routine involves taking 1003 -point shots, is 46 percent from beyond the arc this season for the 61-6 Warriors
OAKLAND, Calif. - Stephen Curry has a well-established after-practice routine of taking 100 shots from 3-point range. He works his way around the arc, hoisting 10 shots from each spot. He once made 70 in a row. He often looks annoyed if the ball so much as glances off the rim before falling through. Deep into his record-setting season with the Warriors, Curry, 28 , seems determined to push the outer bounds of basketball and to press himself, as always, to become a better player. This raises an interesting question: Is there actually that much room for improvement? Some of his teammates are skeptical. "I mean, there isn't a whole lot," Andrew Bogut said. "What's next? I guess shooting pull-ups from halfcourt on a more consistent basis." So, yes, on the surface, it sounds like an absurd question. Absurd because Curry, who led the Warriors to a 121-85 win over the Knicks on Wednesday, (()has made 330 3-pointers this season, obliterating the N.B.A. record of 286 that he set last season))). Absurd because he is averaging a career-best 30.5 points along with 6.4 assists a game. Absurd because he is shooting 51 percent from the field and 46 percent from 3point range. Absurd because he is the league's reigning most valuable player and a shoo-in to win the award again. But the question is absurd mostly because Curry, a 6 -foot- 3 -inch, 185 -pound point guard, is the guiding force behind the Warriors, who could be the most dominant team of all time.

HINTS: Best if you break solution into horizontal and vertical parts since no acceleration exists in horizontal direction. $X=V_{H} t \quad, \quad Y=V_{o v} t+1 / 2 a t^{2}, a=g=-32 \mathrm{ft} . / \mathrm{s}^{2}, \quad 60 \mathrm{mph}=88 \mathrm{ft} . / \mathrm{s}$.

ANSWERS: (a) Sketch components on graphic above. (b) $\mathbf{t}=\mathbf{1 . 1 1 8 \mathrm { s } . , \mathrm { V } = \mathbf { 2 7 . 8 3 } \mathrm { ft } . / \mathrm { s } \text { . (c) ~ } 1 9 \mathrm { mph }}$
X CREDIT: (d) Find vertical velocity as ball goes through hoop? (e) Find horizontal component of velocity as ball goes through hoop? (f) Find resultant velocity (magnitude and direction) as ball goes through hoop?

ANSWERS: (d) - $16.1 \mathrm{ft} . / \mathrm{s}$. , (e) $19.68 \mathrm{ft} . / \mathrm{s}$. , (f) ~ 25.42 ft ./s. @ 39.2° below X axis

