KINEMATICS + CENTRIPETAL FORCE

Units 4,5,8,14 Dr. John P. Cise, Professor of Physics, Austin Com. College, Austin Texas, jpcise@austincc.edu \& New York Times , August 18, 2017 by Jonah Engel Bromwich , Dedicated to my Xavier Univ. professors 1958-1962: Hart, Marchacio,Poldosky.

The Demons of Darkness Will Eat Men, and Other Solar Eclipse Myths

INTRODUCTION: First goal is to find speed of moon's shadow on earth. The shadow speed V(red below) is due to two motions. Orbit speed $V_{0}(t a n)$ of moon rotating about the earth + earth surface speed V_{s} (green) due to earth's rotation on axis. $\quad V=V_{0}-V_{S}$ V_{s} is negative since earth is moving in same direction as shadow.
$V_{\text {ORBIT SPEED }}=\mathbf{\sim} 287 \mathbf{m p h}$

An annular eclipse as seen from Arizona in 2012. Many ancient civilizations saw eclipses as bad omens. We understand the cosmic calculus that leads to solar eclipses like the one that will enchant many Americans on Monday. But even for the most jaded skygazers, a solar eclipse can provoke a visceral sense of wonder that the phenomenon provoked long before it was understood. "If you were the Greeks, before they came to have an understanding of eclipses, you might think it was a bad omen, something the gods were telling you you had done wrong," he said. "If you were the Chinese, you thought dragons were eating the sun." "If you read the 'Anglo-Saxon Chronicle' - which is a really boring read - but if you scan through it, you'll find lots of instances of eclipses, all related to other bad things," he added.

INTRODUCTION (CONTINUED): The moon orbital speed is due to gravity supplying the centripetal force:
$\mathrm{m} \mathrm{v}_{\mathrm{o}}{ }^{2} / \mathrm{R}=\mathrm{G} \mathrm{m} M / \mathrm{R}^{2}$, thus, $\quad \mathrm{v}_{\mathrm{o}}=[\mathrm{GM} / \mathrm{R}]^{1 / 2}$ where $\mathrm{G}=$ gravitational constant $=6.673 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg} .^{2}$,
$M=$ earth mass $=6 \times 10^{24} \mathrm{~kg} ., R=$ ave. distance moon is from the earth $=3.8329 \times 10^{8} \mathrm{~m}$.
At $38^{\circ} \mathrm{N}$ latitude the earth radius is[radius at equator (3959 mi .) $\mathrm{X} \cos .38^{\circ}$] = 3120 mi ., Thus, speed of earth due to axis rotation $=V_{S}=2 \Pi R / 24 \mathrm{hrs}$.

QUESTIONS: (a) Find orbit speed V_{0} ? In units of $m . / s$. \& mph , (b) Find linear speed (in mph) of earth's surface V_{S} due to earth axis spin at $38^{\circ} \mathbf{N}$ Latitude?, (c) Find speed (in mph) of eclipse shadow on earth's surface $V_{\text {shadow }}$ $=$?, (d) Find speed of shadow knowing It is 68 mi . in diameter and it passes in 2 min .40 seconds (2.66 min .) ? HINTS: $\pi=3.1416$, $60 \mathrm{~min} . / \mathrm{hr}$, [2.237 mph$] / \mathrm{m} . / \mathrm{s}$. , X = V t
ANSWERS: (a) $V_{\text {ORBIT }}=1022.57 \mathrm{~m} . / \mathrm{s}$. or 2287 mph , (b) $\mathrm{V}_{\mathrm{s}}=817 \mathrm{mph}$, (c) $\mathrm{V}_{\text {ShADOw }}=\sim 1470 \mathrm{mph}$
(d) $\mathrm{V}_{\text {shadow }}=\mathrm{X} / \mathrm{T}=68 \mathrm{MI} . /[2.66 / 60]=\sim 1530 \mathrm{mph}$ COMMENT: Below are NASA estimates of shadow speed.

		oogle.com	\cdots
City	Mid-totality	Totality Duration	shadow speed
Madras. OR	10:20 a.m.	2m02s	$2.203 \mathrm{mph}(3.545 \mathrm{~km} / \mathrm{h})$
Rexburg. 10	11:34 a.m.	2 m 17 s	$1.879 \mathrm{mph}(3.024 \mathrm{~km} / \mathrm{h})$
Casper. Wr	11:43 a.m.	2 m 26 s	$1.720 \mathrm{mph}(2.768 \mathrm{~km} / \mathrm{h})$
Alliance. NE	12:50 p.m.	2 m 30 s	$1.635 \mathrm{mph}(2.631 \mathrm{~km} / \mathrm{h})$
Grand island. NE	12:59 p.m.	2 m 34 s	$1.535 \mathrm{mph}(2.470 \mathrm{~km} / \mathrm{h})$
Columbia. MO	1:13 p.m.	2 m 37 s	$1.488 \mathrm{mph}(2.394 \mathrm{~km} / \mathrm{h})$
Carbondale. IL	1:21 p.m.	2 m 37 m	$1.458 \mathrm{mph}(2.346 \mathrm{~km} / \mathrm{h})$
Hopkinsville. k	2:26 p.m.	2 m 40 m	$1.452 \mathrm{mph}(2.337 \mathrm{~km} / \mathrm{h})$
Greenville. sc	2:39 p.m.	2 m 11 m	$1.472 \mathrm{mph}(2.369 \mathrm{~km} / \mathrm{h})$
Columbia. Sc	2:43 p.m.	2 m 30 m	$1.479 \mathrm{mph}(2.380 \mathrm{~km} / \mathrm{h})$
			\square

