NEWTON'S 2ND LAW & WORK-ENERGY Units 10,11,6,&7

Dr. John P. Cise, Professor of Physics, Austin Com. College, 1212 Rio Grande St., Austin Tx. 78701 jpcise@austincc.edu & New York Times, October 15, 2016 by Jonathan Corum, Dedicated to Dr. Cise's HS Math teacher, 1956 Mr. Lucian, RB HS

The ExoMars Spacecraft Approaches the Red Planet

<mark>Schiaparelli lander</mark> Trace Gas Orbiter European Space Agency/ATG Medialat **INTRODUCTION:** Oct. 19, 2016, Europe's Schiaparelli lander (m = 600 kg.) will enter Martian atmosphere 5 min. 53 seconds prior to landing on Mars. It's initial speed will be 21,000 km./hr.(v₁) at a altitude of 121 km.(h₁). At 3 min. 21 seconds before landing the Lander will be 11 km. above Martian surface slowed down to 1700 km./ hr.(v₂) by atmospheric friction.

QUESTIONS: (a) Convert $v_1 \& v_2$ to m./s. ? (b) Find initial kinetic energy (K₁) and final kinetic energy (K₂) of the lander ?, (c) Find initial gravitational potential energy (U₁) and final gravitational potential energy (U₂) of the lander? **CONTINUED BELOW**

The ExoMars spacecraft has two components: the solar-powered Trace Gas Orbiter and <mark>the Schiaparelli</mark> lander. The lander will carve through the atmosphere, release its parachute, separate from its outer shell and fire thrusters as it falls to the surface. ESA

QUESTIONS(CON.): (d) Find work done by atmospheric friction while slowing down the lander capsule? Use work-energy concepts ($W = \Delta K + \Delta U$). (e) Find time in seconds between t_1 and t_2 ?, (f) Find average velocity between t_1 and t_2 ?, (g) Find distance traveled (x) between t_1 and t_2 ? (h) Find atmospheric friction force(f) on Lander?, (i) Find rate of deceleration between t_1 and t_2 ?, (j) Knowing mass m = 600 kg. of lander, find frictional force (f)_using Newton's 2nd lawF_{NET} = m a ? (k) Comment of frictional force (f) computation by work-energy vs. F_{NET} = m a ?

HINTS: 0.2777 m./s = km./hr. , K = ½ m v² , U = m g h , g(Martian) = 3.711 m./s.² , W = f x , v_{AVE} = (v₁ + v₂)/2 X = v_{AVE} t ,

ANSWERS: (a) $v_1 = 5833.33 \text{ m./s.}$, $v_2 = 472.22 \text{ m./s.}$, (b) $K_1 = 10.208 \times 10^9 \text{ J}$, $K_2 = 0.0669 \times 10^9 \text{ J}$, (c) $U_1 = 0.269 \times 10^9 \text{ J}$, $U_2 = 0.0245 \times 10^9 \text{ J}$, (d) $W = -10.3856 \times 10^9 \text{ J}$, (e) 201 s., (f) $v_{AVE} = 6,069.44 \text{ ft./s.}$, (g) $x = 0.633715 \times 10^6 \text{ m}$ (h) f = -16,388.44 N, (i) $a = -26.67 \text{ m./s.}^2$, (j) f = -16,002 N, (k) f is close in each case. (j) a bit low due to small Martian Gravitational force component in slightly below horizontal direction not considered in $F_{NET} = m a$.