

Austin Com. College, Austin , Tx. , ipcise@austincc.edu \& New York Times, Sept. 28, 2017 by Adam Baidawi \& Kenneth Chang
Elon Musk's Mars Vision: A One-Size-Fits-All Rocket. A Very Big One.

ADELAIDE, Australia - Elon Muskilis revising his ambitions for sending people to Mars, and he says he now has a clearer picture of how his company, Spacex, can make money along the way. The key is a new rocket - smaller than the one he described at a conferende in Mexico last yearbut still bigger than anything ever launched - and a new spaceship. Speaking on Friday at the International Astronautical Congress ill Adelaide, Australia, Mr. Musk said he had figured out a workable business plan, although his presentation ladked financial figures to back up his assertions. Mr. Musk has long talked about his dreams of colonizing Mars, and at the same conference last year, he finally provided engineering details: a humongous reusable rocket called the Interplanetary Transport System. But he did not convincingly explain then how SpaceX, still a company of modest size and revenues, could finance such an ambitious project. "Now iwe think we have a better way to do it," he said Friday. The new rocket and spaceship would replace everything that SpaceX is currently launching or plans to launch in the near future. "That's really fundamental," Mr. Musk said. The slimmed-down rocket would be nine meters, or about 30 feet, in diameter instead of the 12-meter behemoth he described last year. It would still be more powepful than the Saturn 5 rocket that took NASA astronauts to the moon. Mr. Musk called it B.F.R. (The "B" stand5 for "big"; the "R" is,for "rocket.") The B.F.R. would be able to lift 150 metric tons to low-Earth orbit, Mr. Musk said. For Mars colbnists, the rocket woulld lift a spaceship with 40 cabins, and with two to three people per cabin, it would carry about 100 people pelflight. After launchin'g, the B.F.R. booster would return to the launching pad; the spaceship would continue to orbit, wheré́t would refill its tanks of methane and oxygen propellant before

Mars Base Camp spacecraft
lander that could take astronauts to Mars

INTRODUCTION: Final Goal of this application is to find speed to Mars of 41 Raptor version of BFR . 4 question (below) steps are needed to that end: QUESTIONS: (a) Acceleration of Booster stage(upper left graphic).,(b) Speed at end of 334 second Booster stage. (c) Acceleration of second stage (see graphic at left).,(d) Speed at end of 366 second $2^{\text {nd }}$ stage thrust of $7 \times 10^{6} \mathrm{lb}$. ?

HINTS: Thrust fuel loss affects mass size. Thus, in finding mass size during thrust periods (of booster and second stage) average mass will be used. During 334 seconds of booster thrust: Booster Weight $_{\text {AVE }}=[23.1 \mathrm{M}+4.6 \mathrm{M}] / 2=13.85 \mathrm{M} \mathrm{lb}$. Mass $=13.85 \mathrm{M} / 32=0.4328 \mathrm{M}$ slugs., During 366 second $2^{\text {nd }}$. Stage thrust: $\underline{2}^{\text {nd }}$ Stage ave. mass $=\{[4.6+0.33] / 2\} \mathrm{M} / 32$ slugs $=0.07703$ slugs Note: $0.33 \times 10^{6} \mathrm{lb}$. is empty mass of $2^{\text {nd }}$ stage, 4.6 M lb . is mass of second stage.

QUESTION REVIEW: (a) Set up working equation first using Newton's $2^{\text {nd }}$ law. Show working equation. Find acceleration of Booster with attached $2^{\text {nd }}$ stage on top ?, (b) Find speed at end of 334 s . Booster stage?, (c) For $2^{\text {nd }}$ stage set up working equation first using Newton's $2^{\text {nd }}$ law. Show working equation. Find acceleration of stage 2 with crew cabin attached on top ?, (d) Find speed at end of 366 s . second stage?, (e) Find final speed in mph ?
HINTS: $F_{\text {net }}=\mathrm{ma}, \quad V=V_{0}+$ at $, \quad 88 \mathrm{ft} . / \mathrm{s} .=60 \mathrm{mph}, \quad 0.68 \mathrm{mph}=1 \mathrm{ft} . / \mathrm{s}$.
ANSWERS: (a) $\mathrm{a}=35 \mathrm{ft} . / \mathrm{s} .^{2}$, (b) v=11,691 ft./s., (c) $\mathrm{a}=90.87 \mathrm{ft} . / \mathrm{s} .^{2}$, (d) $\mathrm{V}=\sim 44,949 \mathrm{ft} . / \mathrm{s}$. (e) $V=\sim \mathbf{3 0 , 5 6 5} \mathrm{mph}$. COMMENT: (e) Reasonable speed since escape velocity is $\sim \mathbf{2 5 , 0 0 0} \mathbf{~ m p h}$.

