For Rosetta, a Landing and an Ending on a Comet

This false-color image, taken by the Rosetta spacecraft at a distance of 45 miles, shows the smooth region that connects the two lobes of Comet 67P/Churyumov-Gerasimenko.

INTRODUCTION: 67P comet was held in orbit around sun (R) by gravity supplied by the sun (M_{s}). $\mathbf{G m} M_{e} / R^{2}=m v^{2} / R \quad$ where $v=R \omega=R \mathbf{2 r f}=R \mathbf{2 \pi} / T$ Where $T=$ period of orbit in seconds, thus.....

$$
G m M_{e} / R^{2}=m R^{2} 4 \pi^{2} / T^{2} R \quad \text { produces }
$$

$$
M_{s}=\left[4 \pi^{2} / G\right]\left(R^{3} / T^{2}\right) \quad \text { Kepler's } 3^{\text {rd }} \text { Law }
$$

Where $\mathrm{G}=$ gravitational constant $=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}$. ${ }^{2}$ Jupiter is $778.3 \times 10^{9} \mathrm{~m}$ from sun, and earth is $140 \times 10^{9} \mathrm{~m}$ from sun. Article below states 67P's orbit is as close as earth and as far out as Jupiter. R is average orbit radius which is the semi major axis = average of those close and far distances.

QUESTIONS: (a) Convert 6.5 year period T to seconds?
(b) Find R for 67P about sun?,(c) Find \mathbf{M}_{s} from Kepler's $3^{\text {rd }}$?

For two vears, the Rosetta spacecraft has been playing around with a comet shaped like a rubber ducky.
When the spacecraft makes a gentle belly flop onto the comet on Friday, it will bring to an end to the most ambitious mission ever for the European Space Agency. Since its arrival in August 2014 at Comet 67P/Churyumov-Gerasimenko, Rosetta has been sending reams of data and exquisite photographs of the comet, providing insights and surprises about one of the fragments left over from the formation of the solar system four and a half billion years ago.
On impact, Rosetta will switch off its radio transmitter, leaving silence at the end of its 12 -vear iournev. "Back in November 2014, Rosetta dispatched a small lander, Philae, to the surface of Comet 67P.

> HINTS: See introduction,+ 365 days $=1$ year , $24 \mathrm{hrs}$.$/ day$ 3600 s./hour. Since 67 P 's orbit is said in article to be outside earth's orbit we will take the closest distance from sun as $186 \times 10^{9} \mathrm{~m}$ and the far out distance into the Kuiper belt beyond Jupiter at $850.15 \times 10^{9} \mathrm{~m}$. Use these two Rs to find semi major axis R for Kepler's $3^{\text {rd }}$.
> ANSWERS: (a) $\mathrm{T}=2.05 \times 10^{8}$ seconds, (b) $R=518 \times 10^{9} \mathrm{~m}$. (c) $\mathrm{M}_{\text {sun }}=1.9586 \times 10^{30} \mathrm{~kg}$.

COMMENT: NASA lists $^{M_{\text {sun }}}=\sim 2.0 \times 10^{30} \mathrm{~kg}$, so calculations close.

