## Aubrey McClendon, Chesapeake Energy Ex-Chief, Dies Day After Indictment



Aubrey McClendon, former chief executive of Chesapeake Energy, was indicted Tuesday after a federal into price-fixing, bid-rigging and other anticompetitive conduct in the oil and natural gas industry.

INTRODUCTION: The car which hit the concrete bridge at 60 mph was a 5355 lb. Chevy Tahoe. Car crumpled 2.2 ft inward during crash.

> QUESTIONS: (a) Find mass of car in slugs? (b) Using work-energy concepts ( Lost = gained) or $(W=\Delta K+\Delta U)$ find force of concrete Bridge on car during the 2.2 ft . crumpled crush?

HINTS: $K=1 / 2 m V^{2}, \Delta U=0$ here (no hills) , $60 \mathrm{mph}=88 \mathrm{ft} . / \mathrm{s} ., \mathrm{W}=\mathrm{FX}$

ANSWERS: (a) 167.34 slugs , (b) ~ 294,518 lb.

He built a fortune as head of Chesapeake Energy, whose embrace of new production techniques unlocked previously untapped deposits and helped wean the United States from ever-increasing dependence on imports.But late Tuesday, he was indicted on federal bid-rigging charges accusing him of conspiring to suppress prices for oil and natural gas leases. And on Wednesday morning, he died in a crash in Oklahoma City after his car hit a bridge at high speed. Mr. McClendon, 56, was to have appeared in court later in the day. "He was charismatic and a true American entrepreneur," said T. Boone Pickens, a legendary oilman himself, who knew Mr. McClendon for 25 years. "No individual is without flaws, but his impact on American energy will be long-lasting."


An online image showing a fatal car crash involving Aubrey McClendon.

EXTRA CREDIT: Same question as (b) above, but solve for crumple crush force using Newton's second law concept.
First Question (a): Find $\Delta t$ time of crash? Second Question(b): Find deceleration during crash? , Final Question: (c) Using Newton's second law find force of wall on Car causing the $\mathbf{2 . 2} \mathbf{f t}$. of crumple crush?

HINTS: $X=V_{\text {AVE }} t, V_{\text {AVE }}=\left(V+V_{0}\right) / 2$

$$
\begin{aligned}
& V^{2}=V_{0}^{2}+2 a X \\
& F_{N E T}=m a
\end{aligned}
$$

ANSWERS: (a) $\Delta t=0.05 \mathrm{~s}$.,
(b) $\mathrm{a}=-1760 \mathrm{ft} . / \mathrm{s}^{2}{ }^{2}$
(c) $F=294,518 \mathrm{lb}$.

COMMENT BY AUTHOR: Note solving for F by either using energy-work concepts or Newton's second law results in same F.

