CENTRIPETAL FORCE

 Unit 14 Dr. John P. Cise , Professor of Physics, Austin Com. College , 1212 Rio Grande St., Austin Tx. 78701 jpcise@austincc.edu \& NYTimes Dec. 4, 2015 by Nick Czap
Toyota Asks for Ideas About How to Use an Ultrasmall Vehicle

Abstract

INTRODUCTION: This one person car tilts on turns. In the case at left the angle of tilt is 60° to the horizontal. The radius of the turn is 20 ft . The acceleration is centripetal toward center of circle. The acceleration toward center is supplied by the centripetal force due to the horizontal component of F (road force back on i-Road car) on car. Vertically NO acceleration exists, thus net force vertically = zero. Vertically exists the vertical component of F UP and down the weight mg .

QUESTIONS: (a) Set up the working Equation in the horizontal direction? (b) Set up the working equation in the Vertical direction?

AS a rush of innovation reshapes the automotive industry, from ride-hailing apps to autonomous driving technology, automakers have joined in rethinking the future of transportation.
Toyota, in one venture, is thinking small: a pint-size, three-wheeled electric vehicle called the i-Road. It has built prototypes of the vehicle, but now it needs to develop a market for it.
At a demonstration last month outside AT\&T Park in San Francisco, the futuristic i-Road was put through its paces, zigzagging between orange cones, its two front wheels pivoting like the legs of a downhill skier. A pair of electric motors, which push the vehicle to a top speed of 37 miles per hour, emitted a soft whine. Toyota is not the first company to explore the idea of ultrasmall electric vehicles for urban commuters. Two recent concepts, Honda's three-wheeled 3R-C andHyundai's egg-shaped E4U, take aim at the same territory. When a licensed driver turns on the i-Road, software in the driver's smartphone communicates with the vehicle's software, allowing the i-Road to be driven up to its top speed of 37 m .p.h. If the user is $\mathbf{1 6}$ or older but does not have a driver's license, the software limits the i-Road's output to 4 horsepower and its speed to 20 m.p.h., effectively turning the i-Road into what the California Vehicle Code defines as a motorized bicycle.
(c) From (a) \& (b) find $\sin 60^{\circ} / \cos 60^{\circ}$? (d) Find speed (in ft./s. \& mph) i-Road car is turning at?

HINT: Fcentripetal $=\mathrm{m} \mathrm{V}^{2} / \mathrm{R}, \mathrm{g}=\mathbf{3 2 \mathrm { ft } . / \mathrm { s } . { } ^ { 2 } , \operatorname { s i n } \theta / \operatorname { c o s } \theta = \operatorname { t a n } . \theta , 6 0 \mathrm { mph } = 8 8 \mathrm { ft } . / \mathrm { s } .}$
ANSWERS: (a) $F \cos .60^{\circ}=\mathrm{m} V^{2} / R$, (b) $F \sin .60^{\circ}=\mathrm{mg}$, (c) $\sin .60^{\circ} / \cos .60^{\circ}=\tan .60^{\circ}=r g / V^{2}=1.732$
(d) $19.22 \mathrm{ft} . / \mathrm{s} . \quad$ or $\sim 13.1 \mathrm{mph}$

COMMENT: The solution for speed being ~ $13.1 \mathbf{~ m p h}$ fits the range of speeds the i -Road car is designed for mentioned In the article for users under16 years old.

